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Abstract-When a composite material is subjected to a time-harmonic stress field (homogeneous
or inhomogeneous), different phases undergo different temperature fluctuations due to the well­
known thermoelastic effect. As a result irreversible heat conduction occurs within each phase and
between phases, and entropy is produced. This entropy production is the genesis of ela­
stothermodynamic damping, and manifests itself as a conversion of work into heat. This is one of
a large number of sources of damping in a real composite.

Mechanics-based analytical methods for predicting damping due to various relaxation mech­
anisms have not been reported. Therefore, it becomes difficult to divide the total (experimentally
measured) damping into its various constituents. This defines the objective of the present work: we
present a methodology for predicting the elastothermodynamic damping of an N-Iayer laminated
composite. The stress field may be quite general so long as the resulting heat conduction occurs
only in the direction orthogonal to the laminae. By way of illustration, numerical results are
presented for a symmetric three-layer plate in biaxial bending. © 1997 Elsevier Science Ltd. All
rights reserved.

I. INTRODUCTION

Damping is a critically important property from the viewpoint of vibration suppression in
a variety of applications: submarines, aircraft structures, automobile bodies, and par­
ticularly in large and flexible aerospace structures, e.g., the space station. The extensive use
of laminated composites in these structures is well known. Therefore, there is a need for
the design and manufacture of laminated composites with high damping. For a given
material there are many mechanisms contributing to the total damping, e.g., point defect
relaxation, dislocation motion, grain boundary sliding, coulomb friction at the inclusion­
matrix interface, magnetoelastic effects, and elastothermodynamic effects (Nowick and
Berry, 1972; De Batist, 1972; Kinra and Wolfenden, 1992; Wolfenden and Wolla, 1992).
Most of these damping mechanisms offer a significant damping only over a small range of
frequency, temperature, or stress, and are, in general, nonlinear (i,e., damping depends
upon the stress amplitude). Elastothermodynamict damping (also known as thermoelastic
damping) offers an attractive alternative to these sources of damping. In this case the
damping is due to thermal currents within the structure and is not accompanied by a
loss of stiffness or strength. Moreover, elastothermodynamic damping is linear, i.e" it is
independent of the stress amplitude. Finally, it is envisioned that the elastothermodynamic
damping of composite materials and structures can be tailored in a manner analogous to
that used currently for tailoring stiffness, strength, coefficient of thermal expansion, etc.

Whenever a material is stressed in a reversible adiabatic (i.e., isentropic) process, there
is always a change in its temperature, however small. This phenomenon is known as the
thermoelastic effect and can be deduced from the Maxwell's relations (Zemansky and
Dittman, 1981); for an isotropic material

t To whom correspondence should be sent.
t We propose that elastothermodynamic is a more appropriate qualifier for the word damping than ther­

moelastic. Historically (Boley and Weiner, 1960), the word thermoelastic has been used to connote a situation
where the cause is an externally applied temperature field (thermo), and the effect is an elastic stress field (elastic),
hence thermoelastic. In the present context of damping, there is no externally applied temperature field. Instead,
the cause is an externally applied traction field and the accompanying stress field (elasto), and the effect is a
temperature field (thermo). Moreover, the dissipation of mechanical energy occurs only if the stress field is time
dependent (dynamic), hence elastothermodynamic.
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( aT) tx
oakk S = -Tc (1)

where T is the absolute temperature, akk is the hydrostatic stress, tx is the linear coefficient
of thermal expansion, C is the specific heat per unit volume, and the subscript S denotes an
isentropic process. Note that for isotropic materials, the application of a shear stress does
not produce a change in temperature; hence the presence of (J'kk in (1). Since the temperature
and stress fields are coupled, inhomogeneities in stress (e.g., stresses due to bending) and
material properties (e.g., a laminated plate) result in inhomogeneities in temperature. Heat
conducts from the high-temperature regions to the low-temperature regions and, as a
consequence of the second law of thermodynamics, entropy is produced which is manifested
as a conversion of useful mechanical energy into heat; we define this process as ela­
stothermodynamic damping (entropic description). An alternative yet equivalent view of
this phenomenon is as follows. The fluctuating temperature produces a thermal strain field
that is out of phase with the applied stress field. This phase difference may be used to
calculate the conversion of useful mechanical energy into heat; we define this as the
mechanical description of elastothermodynamic damping. Bishop and Kinra (1995b) have
recently proven the equivalence of the two descriptions for a general composite material
with anisotropic (or triclinic) phases and with thermally perfect or imperfect interfaces
between the constituent phases.

Following Zener's seminal work (1937, 1938), several researchers have investigated
thermoelastic damping over the past sixty years in homogeneous structures (Eshelby, 1949;
Biot, 1956; Lucke, 1956; Deresiewicz, 1957; Alblas, 1961, 1981 ; Chadwick, 1962; Good­
man, 1962; Tasi, 1963; Tasi and Herrmann, 1964; Gillis, 1968; Shieh, 1971, 1975, 1979;
Lee, 1985, and Landau and Lifshitz, 1986). Recently, Kinra and his coworkers have studied
elastothermodynamic damping in cracked media (Kinra and Bishop, 1996), and in lamellar,
fibrous, and particulate composite materials (Kinra and Milligan, 1994; Milligan and
Kinra, 1993, 1995a,b; Bishop and Kinra, 1993, 1994, 1995, 1996).

The total damping of a composite is due to a large number of relaxation mechanisms
(see, for example, Nowick and Berry (1972». Much of the damping research to date has
been empirical or semi-empirical in nature. So far as we know, mechanics-based analytical
methods for predicting the damping due to a particular relaxation mechanism have not
been reported. In the absence of such analytical methods, it becomes difficult to divide
the total damping (measured experimentally) into its various constituents, and to design
composite materials with high damping (or, occasionally, with low damping for certain
applications). This defines the objective of the present work. In this paper we present an
analysis of the elastothermodynamic damping of an N-layer laminated composite with
thermally perfect or imperfect interfaces. The stress field may be quite general so long as
the resulting heat conduction occurs only in the thickness direction. As an illustrative
example of the general procedure reported in this paper, results are presented for a sym­
metric three-layer plate subjected to a time-harmonic, biaxial bending with thermally perfect
interfaces. We will show that by a proper choice of constituent materials, lamina size,
and frequency, one can design laminated composites such that the contribution of the
elastothermodynamic damping is a significant fraction of the total damping.

2. GENERAL THEORY

The field equations required for calculating the entropy produced and external work
lost in an isotropic homogeneous thermoelastic material are now assembled. The tem­
perature field is governed by the two-way coupled coupled heat conduction equation (Now­
inski, 1978)

aT 2 O(J'kk
C- = kV T-txT-at at (2)

where t is time, and k is the thermal conductivity. The last term is due to the thermoelastic
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effect, (1). The qualifier "two-way" implies that the stress field affects the temperature field,
and conversely the temperature field affects the stress field. For most crystalline solids the
relative temperature change resulting from the thermoelastic effect is very small. For
example, if an initially unstressed rod of steel at an equilibrium temperature of To = 300 K
is subjected to a uniaxial tensile stress comparable to its yield stress, say 700 MPa, the
decrease in temperature is 0.7 K, i.e., I(T- To)/Tol = 2 x 10-3

. It is well known that the
thermal stresses produced by these small changes in temperature are negligibly small
compared to the applied stresses (Boley and Weiner, 1960). Therefore, for our purpose of
calculating the small changes in temperature resulting from the thermoelastic effect, we
assume that the stress field is independent of the temperature field. Equation (2) now
becomes the linear one-way coupled heat conduction equation. Moreover, without intro­
ducing an appreciable error, the algebraic effort can be greatly reduced by replacing Twith
To in the last term (Nowinski, 1978); then (2) reduces to

(3)

In the remainder of this paper the attention is confined to time-harmonic forced
vibrations with a circular frequency, w. Then the stress field may be written as,

(4)

where x is the spatial coordinate vector. Here, O"kk(X) is taken to be real-valued, and as
usual, a real-valued stress is obtained by taking either the real or imaginary part of O"kk(X, t).
With reference to (3), since O"kk is now time-harmonic the fluctuations in T will necessarily
be time-harmonic. Introducing a complex equilibrium temperature r: = To (1 + i), the tem­
perature field may be written as

T(x, t) = r:+ V(x,w)eiWI
• (5)

The term Ve iwt represents the fluctuations of temperature about the equilibrium temperature
r:. The following identity due to Brillouin (1953) will be found quite useful for obtaining
quantities time-averaged over one cycle,

w r2,,/w I _ 1
2n Jo Re(F) Re(f) dt = 2: Re(Fj) = 2: Re(Pf) (6)

where F and f are two time-harmonic complex quantities with a frequency w, and the
overbar (-) denotes the complex conjugate.

An expression is now derived for the entropy produced per unit volume per cycle of
vibration, L\s, in terms of V. The rate of entropy produced per unit volume, sp, due to
irreversible heat conduction is given by (de Groot and Mazur, 1984)

ks =-VT·VT
P T2

(7)

where the symbol· denotes the dot product of two vectors and the dot over a symbol (")
denotes partial differentiation with respect to time. Consistent with the assumptions of (3),
(7) is now approximated by replacing T with To in the denominator, then

ks =-VT·VT.
p T~

The entropy produced per unit volume during one cycle of vibration is given by

(8)
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As = fspdt. (9)

Substituting the real part of the temperature from (5) into (8) and using (9) and (6) yields

k 7l: -
As(x,w) = --Re(VVoVV).

T 2 wo

(10)

An additional amount of entropy, ASnterjace, is produced if the medium has any thermally
imperfect interfaces at which the temperature is discontinuous (Bishop and Kinra, 1996).
An expression for ASinterjace will be presented in Section 3.2. Thus, the total entropy produced
per cycle, AS, over the entire body occupying a region R is given by

AS(w) = LAsdR+ASinterface. (II)

An expression is now derived for the work lost per unit volume per cycle, Aw, in terms
of V. The work lost per unit volume during a cycle of vibration is given by (Nowick and
Berry, 1972, Ch. 1.3)

(12)

where (T'm is the stress tensor, and B'm is the strain tensor. The change in temperature due to
the thermoelastic effect produces a thermal strain. The strain tensor Blm may be decomposed
into its elastic part Br~ and its thermal part Bi~

(13)

The elastic part of the strain field does not contribute to the work lost since it is always in
phase with the stress field. Furthermore, the time-harmonic thermal strain may be written
as

Taking the real values of (4) and (14), substituting into (12), and using (6) yields

Aw(x, w) = -7l:(Tlm(X) Im(Bi~(x,w».

The thermal strain is given by

where blm is the Kronecker delta. Substituting (16) into (15) gives

Aw(x, w) = -7l:IX(Tkk(X) 1m Vex, w).

The total work lost over the entire body occupying a region R is

AW(w) = LAw(x,w)dR.

(14)

(15)

(16)

(17)

(18)

Recently, we considered elastothermodynamic damping in a general composite



Elastothermodynamic damping 1079

material subjected to a steady-state time-harmonic external loading (Bishop and Kinra,
1996). Each of the constituent phases was taken to be generally anisotropic. The interfaces
between the phases could be thermally perfect or imperfect. The outer boundaries of the
composite were assumed to be adiabatic. As expected (Bejan, 1996), we verified that over
one cycle, the total work lost throughout the composite, AW, is equal to the total entropy
produced throughout the composite, AS, times the equilibrium temperature, TO' i.e.,

(19)

However, contrary to intuition, we found that Aw "# ToAs pointwise, i.e., the work lost at
a point is not necessarily equal to the entropy produced at that point times the equilibrium
temperature. Following Zener (1938), ToAS will be referred to as the total heat increment
per cycle.

Finally, a specific damping capacity for the entire laminate, '1', is defined as the total
work lost during one cycle normalized by the maximum elastic energy stored in the com­
posite during that cycle, W,

where

AW
'1'=­

W
(20)

(21)

3. ELASTOTHERMODYNAMIC ANALYSIS OF A LAMINATED COMPOSITE

We now apply the general theory of Section 2 to the special case of laminated
composites.

3.1. Ter.nperature
The temperature field is now solved for an N-layer laminated composite with perfect

or imperfect thermal interfaces subjected to a time-harmonic stress field (see Fig. 1). Each
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Fig. 1. An N-Iayer laminated composite with coordinate system and dimensions shown.
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lamina is assumed to be homogeneous, isotropic, and thermoelastic. (An extension of our
analysis to include the case where each lamina is orthotropic with one material coordinate
coinciding with the z-eoordinate is fairly straightforward; this is deferred to the Appendix.)
Furthermore, the stress field may be quite general so long as the resulting heat conduction
occurs only in the direction orthogonal to the layering, i.e., along the z-direction.

The inhomogeneous term in (3) is cast as a heat generation term for thej-th layer,

(22)

For each of the laminae, (3) may be written in the form

The initial condition is 1j(z, t) = To at t = 0 in Zl < Z < ZN+I' The outer boundaries are
taken to be adiabatic. Then, the boundary and interface conditions are

oTI = 0
8z

at Z = Zj

at Z = zj+ 1 ;j = 1,2, ... ,N-l

(24)

(25)

oTN = 0
oz

at Z = Zj+ 1 ;j = 1,2, ... ,N-l

at Z = ZN+I

(26)

(27)

where Jj is the film coefficient at the interfaces Z = Zj' The finite value of the film coefficient
in the interface condition, (25), represents a discontinuity of temperature at the interfaces.
When Jj -+ 00, (25) reduces to (the familiar) 1J = 1J+ I at Z = Zj+ I' which represents the
continuity of temperature or a perfect thermal contact.

As an aside we note that the concept of a film coefficient may be used not only to
model a distinct imperfect interface but also an interphase layer which is sufficiently thin
so that a linear temperature distribution across the interphase may be assumed. Thenfmay
be thought of as the quotient of two parameters: (1) an effective interphase thickness, b,
and (2) an effective interphase thermal conductivity" such that f = "lb. Combining the
interface conditions, (25) and (26), gives

-k oTj _ _ Tj+i-Tj _ -k 8Tj + 1
j:'l - "j+ 1 ~ - j+ 1 :'lz at Z = Zj+ 1 •

uZ Uj+1 U

(28)

From this equation it can be clearly seen that the continuity of heat is maintained across
an interphase layer whereas the temperature is discontinuous due to the finite distance and
finite thermal conductivity of the interphase layer.

Following the standard integral transform techniques presented by Ozisik (1980, Ch.
14), the solution of the boundary value problem, (23) through (27), in terms of the
fluctuating temperature field, was found to be
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(29)

(30)

and the norm Nn is given by

(31 )

where 4>jn(z) and Pn are, respectively, the eigenfunctions and eigenvalues of the following
eigenvalue problem

Zj < Z < Zj+ I ; j = 1,2, ... , N. (32)

The subscript n implies that there is a countably infinite number of discrete eigenvalues and
the corresponding eigenfunctions. The boundary conditions for (32) are the same as (24)
through (27) but with ~ replaced by 4>jn' The eigenfunctions satisfy the following ortho­
gonality relation

(33)

where the norm Nn is defined in (31), and 4>jm 4>jm represent two distinct eigenfunctions. A
procedure for obtaining the eigenfunctions and eigenvalues is given by Ozisik (1980, Ch.
8) and, therefore, will not be described herein.

3.2. Entropy produced
An expression is now derived for the entropy produced per unit volume per cycle in

thej-th layer, L\siz). Substituting the expression for Vj from (29) into (10), gives

(34)

If the composite has any thermally imperfect interfaces, Bishop and Kinra (1996) have
shown that an additional amount of entropy is produced per unit area per cycle, AsinterJace.

For the special case of one-dimensional heat conduction under consideration, this entropy
production per unit area for the j-th interface is given by

Ainter/ace = - ~[k.Re(dVj v) -k Re(dVj + 1 J7) ] (35)
J wT~ J dz J z~z,+l J+l dz J+l z~zt+l .

The total entropy produced per cycle at all the interfaces, Aimer/ace, is obtained by integrating
over the area A of the interfaces
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N-1f!:J.sin,erface = L: !:J.sjnterface dA.
j=l A

(36)

Finally, the total entropy produced per cycle, !:J.S, over the entire laminate is obtained by
substituting (34) and (36) into (11).

3.3. Work lost
Substituting the expression for Vj from (29) into (17), we obtain the following

expression for the work lost per unit volume per cycle in thej-th layer, !:J.wlz).

3.4. Elastothermodynamic damping
An expression is now derived for the specific damping capacity, '1', of the entire

laminated composite. In view of (11), (18), and (19), either (34) and (36) or (37) may be
used to calculate the total work lost per cycle, Ll W. It turns out that the use of (37) results
in a significant reduction in the algebraic effort. Accordingly, substituting (37) into (18)
and using (20) and (21), we obtain

(38)

We now have general expressions for the fluctuating temperature, Vj' entropy produced
per unit volume per cycle Llsj , work lost per unit volume per cycle !:J.wj , and the specific
damping capacity '1'. This concludes the elastothermodynamic analysis of an N-layer
laminated composite with thermally perfect or imperfect interfaces.

4. AN ILLUSTRATIVE EXAMPLE: A SYMMETRIC THREE-LAYER PLATE

As an example of the general procedure in Section 3, consider a symmetric three-layer
plate with thermally perfect interfaces as shown in Figure 2. The externally applied time­
harmonic moments are taken to be in phase with each other, and the factor eiwt is implied,
as is customary. We assume that the deformations in the plate are adequately described by
the classical (thin) laminate theory based on the well-known Kirchoff hypothesis (CLT).
Since the plate is symmetric in both the material properties and the geometry, there is no
coupling between bending and extension. Herein, we consider bending only. It is assumed
that given the bending/twisting moments MxCx,y), My(x,y), and Mxy(x,y), the curvatures
Kx(X,y), Ky(X,y), and Kxy(X,y), have been calculated using the CLT (see Jones, 1975, for
example). Our sign convention is that positive moments produce positive curvatures (see
Fig. 2); it is different from that of Jones (1975). With U zz = azx = azy = 0, the nonzero
stresses are given by

so that

E
a.n = - -1--

2
(Kx+VKy)Z,

-v
(39)
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Fig. 2. A symmetric three-layer plate. Only the positive x and y faces are used to show the sign
convention for the bending moments; the negative x and y faces are used to show the sign convention

for the twisting moment.
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(40)

Note that the hydrostatic stress field, (1kb is independent of the twist curvature, K xy , and,
therefore, of the twisting moment, MxY" In keeping with the assumptions in the CLT, the
gradients of temperature in the x and y directions are very small compared to the gradients
in the z-direction. From (8), the production of entropy depends upon the square of these
temperature gradients. Therefore, for the purpose of calculating the total damping of the
laminate, it appears reasonable to assume that heat conduction in the x and y directions
may be neglected.

We now determine the fluctuating temperature field. Note that (1kk in (40) is an odd
function of z. Since the operator in (23) is symmetric in z, it follows that V is an odd
function of z, and V = 0 at z = O. Thus, it is sufficient to consider only the upper half of
the plate, z > O. In the following the subscript OJ will refer to the inner layer of thickness
2a, and the subscript (h will refer to the two outer layers each of thickness (b-a); the
total thickness of the plate is 2b (see Fig. 2). The volume fraction of the outer layers is
Vr= I-a/b. Using the method of Ozisik (1980, Ch. 8), the eigenfunction for each of the
laminae is given by

(41)

(42)

where An and En are

(43)

and
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The constant t is a characteristic time of heat conduction. We introduce a normalized
frequency 0\ = rot\. The transcendental equation for the eigenvalues f3n is

- sin Yn cos('1najb)

KcosYn sin('1najb)

o -sin'1n

sin('1najb)

-cos('1najb) = O.

cos'1n

(44)

The expression for ~ given by eqn (29) may now be cast in the following form

where

I 1
II = - sin(Yn) - - cos(Yn)

y~ Yn

12 = ~{An[~(COS('1n)-coS('1najb))+sin('1n)- ~Sin('1najb)]
'1n '1n

+ Bn[:n (sin('1n) - sin('1najb)) -cos('1n) + ~COS('1najb)]}

1 1
13 = "2 - 4 sin(2Yn)

Yn

1( a) 2 2 I 2 2' •14 ="2 1- b (An +Bn)+ 4'1n (An -BnHsm(2'1n)-sm(2'1najb)]

1- 2 AnBn[cos(2'1n) -cos(2'1najb)].
'1n

(45)

(46)

(47)

Intuitively, as Ot --+ 0 the time period of vibration goes to infinity, during each cycle
heat has plenty of time to diffuse between the "cold" tensile side and the "hot" com­
pressional side, the isothermal conditions are obtained; therefore, V(z) --+ 0, -b ~ z ~ b.
In the other extreme, as 0\ --+ 00, the time period of vibration goes to zero, and heat has
very little time to diffuse before the stress (and therefore the direction of heat conduction)
is reversed. Therefore, with the exception of the immediate vicinity of the interface where
there will always be some heat conduction no matter how high the frequency, essentially
adiabatic conditions are obtained. Under strictly adiabatic conditions (i.e., when we set the
thermal conductivity k = 0), the temperature in each layer is given merely by the ther­
moelastic effect, (1). Using (40),

(48)

As a check on our algebra, we took care to verify that (45) satisfies these two conditions.
We now introduce a normalized fluctuating temperature as
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Fig. 3. (a) Magnitude and (b) phase of the normalized fluctuating temperature vs the normalized
position for the symmetric three-layer, zinc-steel-zinc plate with thermally perfect interfaces, for

nSI<.<'I = 0.1, 1, 10, 100, and 1000, and for a zinc volume fraction VI = 0.5.

(49)

A physical feel for the denominator may be developed as follows. If a homogeneous Kirchoff
plate of thickness 2b is subjected, under adiabatic conditions, to static moments (Mx , My)
with resulting adiabatic curvatures (Kx , Ky ), then the increase in temperature of the upper
surface will be Tob(Kx +Ky)(Erx/(l- v)C). In polar form 0 = 11011 exp(i0), where 11011 is the
magnitude and <I> is the phase of 0. In Figs 3(a) and (b) we have plotted 11011 and <1>,
respectively, vs the normalized position, ~ = z/b, for a zinc-steel-zinc plate with a J = as/eel

as a parameter, and a zinc volume fraction VJ = 0.5. (One of the potential engineering
applications of high-damping zinc-coated steel sheets is in the design of automobile bodies
for a quiet ride.) Recall, at z = 0, V == 0 at all frequencies. Note that for as/eel = 0.1
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Fig. 4. Normalized entropy vs the normalized position for the symmetric three-layer, zinc-steel-zinc
plate with thermally perfect interfaces, for n"", = 0.1, I, 10, 100, and 1000, and for a zinc volume

fraction V( = 0.5.

the conditions are essentially isothermal, 11011 is approaching zero, and the fluctuating
temperature is out of phase with the applied stress by approximately nj2. As Osreel increases,
temperature gradients develop throughout the thickness of the plate, and spatial variations
in c:D become increasingly localized near the interface. For reference, the temperature given
by (48) is plotted as the "adiabatic limit" (straight lines) in Fig. 3(a). At very high
frequencies, nsree} = 1000, 110 II approaches the adiabatic limit, and ¢ ...... 0, with the obvious
exception of the immediate vicinity of the interface as discussed previously.

Using (34) the entropy produced per cycle per unit volume in each layer, lisj , is given
by

(50)

We introduce a normalized measure of entropy produced,

lis
(51)

A physical feel for the denominator may be developed as follows. If a homogeneous
Kirchoff plate of thickness 2b at an equilibrium temperature To is subjected, under adiabatic
conditions, to static moments (Mx , My) with resulting adiabatic curvatures (Kx , Ky), then
V = To(Kx+Ky)(EiXj(l- v)C)z. While holding the moments fixed, the plate is allowed to
return to its equilibrium temperature To by way of internal heat conduction; there is no
heat exchange with the surroundings. Next, the plate is unloaded adiabatically; then
V = - To(Kx +Ky)(EiXj(l- v)C)z. Once again, the plate is allowed to return to its equi­
librium temperature To by way of internal heat conduction. The total entropy produced per
unit area during this complete cycle is ((Kx+K,)bEiX)2bj3(l-V)2C. For use in the next
paragraph, the total external work lost during this cycle per unit area is
((Kx+Ky)bEiX)2bToj3(l-v)2C.

The normalized entropy is plotted in Fig. 4 vs the normalized position ¢ for the zinc­
steel-zinc plate, with Osreet as a parameter, and a zinc volume fraction VI = 0.5. As expected
from the adiabatic boundary conditions, the entropy produced is zero at ¢ = I. At low
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Fig. 5. Normalized work lost vs the normalized position for the symmetric three-layer, zinc-steel­
zinc plate with thermally perfect interfaces, for !l"M = 0.1, I, 10, 100, and 1000, and for a zinc

volume fraction Vf = 0.5.

frequencies (e.g., 0s,eel = a.l) the problem is essentially isothermal, and accordingly, the
entropy produced is approaching zero throughout the plate. At high frequencies (e.g.,
0s,eel = IaOO) the problem is essentially adiabatic and, with the exception of the immediate
vicinity of the interface, the entropy produced is nearly zero.

Using (37) the work lost per unit volume per cycle in each layer, Liwj' is given by

(52)

We introduce a normalized measure of work lost,

(53)

A physical feel for the denominator was discussed in the context of (51). The normalized
work lost is plotted in Fig. 5 for the zinc-steel-zinc plate vs the normalized position ~ with
OSleel as a parameter, and a zinc volume fraction VI = a.5. Note that the normalization of
Liw and Lis was done in such a manner that setting I/J = X corresponds to Liw = ToLis, i.e.,
one unit of normalized entropy produced corresponds to one unit of normalized work lost.
Accordingly, I/J (Fig. 5) and X (Fig. 4) are plotted on an identical scale. In accordance with
the results of Bishop and Kinra (1996), pointwise I/J #- Xor Liw #- ToLis. Comparing Figs 4
and 5 we see that I/J is maximum at the outer surface ¢ = I whereas X is identically zero.
Conversely, at the neutral axis I/J is zero for all frequencies, whereas X is not. There are
regions where I/J becomes negative. At first sight this may appear disturbing for it implies
that work is being produced rather than converted into heat. However, the only constraint
imposed by the second law ofthermodynamics is that the total entropy produced throughout
the plate (a closed thermodynamic system which does not exchange heat with its sur­
roundings) during one cycle of loading is either zero or positive, i.e., liS ~ a. It follows
from (19) that T/1S == Li W ~ a, i.e., the total work lost throughout the plate during one
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Fig. 6. Specific damping capacity vs the normalized frequency O",,f for the symmetric three-layer,
zinc-steel-zinc plate with thermally perfect interfaces, with zinc volume fraction VIas the parameter.

cycle should be zero or positive. It then follows that 'I' ;;:: O. From Fig. 6, it is obvious that
this second-law constraint is clearly satisfied. Moreover, negative values of l/J have in the
past been observed in the case of a perfect interface between two semi-infinite rods of
thermoelastically different materials (Kinra and Milligan, 1994) and a Griffith crack (Kinra
and Bishop, 1995).

Using (38) the specific damping capacity for the three-layer composite plate is given
by

where Qn is defined as

(55)

and

f/K) = I [K~+K;+2(l-Vj)K~y+2VjKxKy]dxdy, j= 1,2
xy

f3(K) = I (Kx+Ky)2 dxdy.
xy

(56)

A modulus of elastothermodynamic damping has been defined as '1'0 = 2rr.Ecx? Tole. This
parameter first appeared in Zener's work (1937) when he analyzed the thermoelastic damp­
ing of a homogeneous beam undergoing flexural vibrations. Zener called it the relaxation
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Table I. Thermoelastic constants (nominal values)

E k IX (lO~6) C(106)
(GPa) (JS-l m~1 K -I) (K -I) (J m- 3K -I) '1'0

Al 70 220 24 2.4 0.33 0.030
Steel 200 52 12 3.8 0.33 0.015

Ti 120 39 8.4 2.3 0.33 0.0066
Zn 100 110 40 2.7 0.33 0.11
Ni 210 92 13 3.9 0.31 0.018

strength. In honor of Zener, we would like to rename it as the Zener's modulus of ela­
stothermodynamic damping (cf. the Young's modulus ofelasticity). This parameter is listed
in Table 1.

The damping of the zinc-steel-zinc composite plate is plotted in Fig. 6 as a function of
'lSleel for various values of VJ (the volume fraction of zinc), with the curvatures K xp = 0,
K x = K p = constant, and To = 300 K. For a given value of Vj, as 'lSleel --+ 0 essentially
isothermal conditions are obtained, and If --+ O. At the other extreme, as 'lsreel --+ 00, away
from the interfaces, essentially adiabatic conditions are obtained, and, once again If --+ O.
For comparison, If for an uncoated steel plate (VJ = 0.0) is also shown; the maximum
damping is Ifmax ~ 0.025. At a "very small cost" of adding 20% zinc (by volume), Ifmax

increases to 0.055, i.e., by about 100%. When Vf = 0.4, Ifmax ~ 0.1, i.e., an increase of
about 400%. (We note that for other material combinations, these damping values may be
much smaller.)

The special case of a homogeneous plate may be obtained from (54) by letting Vf --+ O.
After some careful analysis, we obtained the following result

(57)

where we have defined an unsubscripted normalized frequency, 'l = wC(2a)2/n2k, so that
our result will be directly comparable to a classic result by Zener (1937). Note that 2a is
the thickness of the homogeneous plate. The expression in the square brackets in (57) is
precisely the damping of a homogeneous Euler-Bernoulli beam subjected to in-plane bend­
ing (Zener, 1937). Thus, the following elegantly simple result follows immediately: for a
homogeneous plate.

(58)

where A. = (I +v)!J(K)/(1 - v)j; (K). Consider the special case, Kxy = 0, Kx = Kp = constant,
and v = 1/3; then A. = 3. Therefore, Ifplale = 3lfbeam, i.e., the damping in a plate subjected
to equal biaxial curvatures is three times the damping in a beam subjected to the same
curvature in the plane of the beam. Furthermore, if Kxy = K p = 0 then A. = 2, i.e., when
subjected to identical curvatures, the plate damping is twice the beam damping. Zener
(1937) made a clever observation that the series in (57) is accurately represented by merely
its first term (n = 0), and that 96/n4 = 0.9855 ~ l. Then, (57) reduces to the well-known
form for a standard anelastic solid

(homogeneous plate). (59)

Equation (59) also affords us a simple setting in which we can build our intuition concerning
'l. To this end we first introduce the notion of a diffusion length 1= (2k/wC) 1/2 so that
'l = (8/n2)(a/l)2. A physical feel for the diffusion length may be obtained as follows. Consider
a semi-infinite rod occupying 0 < x < 00 at an equilibrium temperature TO' subjected to a
time-harmonic temperature V = Voe iwt at the end x = O. In the interior the temperature
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variation is given by Vex) = Va exp( - (1 + i)x/I) i.e., the diffusion length controls the rate
of spatial decay. Thus, at x = I, IV/Vol = lie, i.e., at a depth of one diffusion length the
temperature drops by lie. Returning to eqn (59) we observe that the maximum damping is
'Pmax = A'PoI2 and occurs at n = 1which translates to (all) ~ 1. We thus gain an important
insight into the physics of the problem under consideration: for a homogeneous plate the
maximum damping occurs when the diffusion length is comparable to one-half of the plate
thickness. A parallel insight can be gained by thinking in terms of the characteristic
time r = a2C/k. Then n = 1<::> fr = n/8, where f = w/2n is the frequency in Hertz. Taking
8/n ~ 2,1 = 1/2r. Viewing r a "the time taken by heat to travel (or diffuse across) a distance
'a'," 2r becomes the round-trip travel time. In mechanical vibrations, for example, the
longitudinal vibrations of a rod of length a, the fundamental resonance occurs when the
frequency f = 1/2r, where 2r is the round-trip travel time of the wave, r = a/c, and c is the
longitudinal wave velocity. In view of this strong analogy, it is tempting to view n = 1 as
the excitation of a thermal resonance which results in maximum damping.

Finally, the Office of Naval Research recently concluded an Accelerated Research
Initiative (ARI) in which the objective was to design materials with 'P ~ 0.06. Measurement
of damping in continuous fiber-reinforced and particle-reinforced metal-matrix composites
has been reported by several researchers (Timmerman, 1982; Timmerman and Doherty,
1984; Steckel, 1985; Steckel and Nelson, 1985; Bhagat et al., 1989; Kinra et al., 1991;
Kinra and Wren, 1992; Wren and Kinra, 1992; Zhang et al., 1992; Perez et al., 1993;
Riviere and Woirgard, 1993). Typically, 'P was found to be of the order of a few percent.
(As far as we know, similar data concerning the damping of laminated MMC's has not
been reported in the open literature.) The measured damping is due to all relaxation
mechanisms including elastothermodynamic relaxation. We have shown that through a
proper choice of constituent materials, laminae size, and frequency, our analysis can be
used to design high-damping laminated composites in which elastothermodynamic damping
is the dominant component of the total damping. Consider, for example, a one mm thick
steel plate with a zinc volume fraction, Vr = 0.5. The highest damping is 'Pmax = 0.12, which
is quite high. Moreover, a significant damping (say, 'P > 0.01) is obtained over a broad
range (more than three decades) of frequencies, 0.1 < f < 200 Hz, which has applications
in absorbing low-frequency noise. For comparison, it is well known that the combined
intrinsic material damping due to all other relaxation mechanisms in most metals is generally
very small, 'P < 0.01. Moreover, the elastothermodynamic damping is in addition to the
damping due to all other mechanisms.

5. CONCLUSIONS

Analytical expressions for the temperature field, entropy produced, work lost, and the
elastothermodynamic damping for an N-layer laminated composite with perfect or imper­
fect thermal interfaces have been obtained. The composite plate may be subjected to any
stress field so long as the resulting heat conduction may be described by a single spatial
coordinate orthogonal to the layering. As an illustrative example, results were presented
for a symmetric three-layer plate with perfect thermal interfaces subjected to biaxial bending.
Numerical results were presented for a zinc-steel-zinc composite plate. Through a proper
choice of constituent materials, laminae size, and frequency, our analysis can be used to
design laminated composites in which the elastothermodynamic damping is a significant
fraction of the total damping.
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APPENDIX: ORTHOTROPIC LAMINAE

The analysis presented in this paper is extended to include the case where each of the laminae is orthotropic
with one material coordinate coinciding with the z-axis, e.g., continuous-fiber-reinforced composite laminates.
We will assume that for a given loading, the CLT has been used to calculate the stress field,l1/m(x,y, z), throughout
the laminate. The essential difference between an orthotropic and an isotropic lamina is that now the coefficient
of thermal expansion (lXlm) and the thermal conductivity (kim) must be represented by tensors. In this Appendix,
we present only those equations that change in the course of this generalization. For the convenience of the reader,
the equations in the Appendix are numbered to correspond to their isotropic version in the body of the paper.
Equations (I), (3), (8), (10), (16), (17) become, respectively,

(aT) lX/m

al1'
m

s = -TC

1t _

As(x, w) = --2 k'm Re( V. I V.m)
wTo

AW(X, w) = -1tlX'ml1/m(X) 1m Vex, w).

(AI)

(A2)

(A3)

(A4)

(AS)

(A6)

We now turn to Section 3. Recall that it is assumed that heat conduction occurs only in the z-direction. For
brevity, let kj be the thermal conductivity ofthejth lamina in the z-direction, i.e., kj = 1e3J . The analysis in Section
3 still remains valid provided we make the following three changes. Equation (22) becomes

(Note that only k, I, and m, are tensorial indices, butj is not.) The L o in eqn (29) is now given by

Lo = J, f'+o !t,ml1'm(X,y, u)cPjo(u) du
"

where the j-superscript on lX/m denotes the j-th lamina as usual. Finally, eqn (37) becomes

and If' is still given by eqn (38).

(A7)

(A8)

(A9)


